解析:F(x)=向量OA?向量OB =1/2*sin(2x/3)+√3(cos(x/3))^2=1/2*sin(2x/3)+√3/2*cos(2x/3)+ √3/2
F(x)=sin(2x/3+π/3)+√3/2
F(x)的一条对称轴为:(2x/3+π/3)=π/2==>2x/3=π/6==>x=π/4
解析:F(x)=向量OA?向量OB =1/2*sin(2x/3)+√3(cos(x/3))^2=1/2*sin(2x/3)+√3/2*cos(2x/3)+ √3/2
F(x)=sin(2x/3+π/3)+√3/2
F(x)的一条对称轴为:(2x/3+π/3)=π/2==>2x/3=π/6==>x=π/4