(1)当a=2时,g(x)=2x^2+3x
h(x)=lnx-2x^2-3x
求导,h'(x)=1/x-4x-3
当h'(x)>0时,h(x)单调递增.
因为x>0,所以:
-4X^2-3x+1>0
解得x∈(-1,1/4)
(2)本题可变型为:存在x>0,使f'(x)=g'(x)
所以,可得:1/x=2ax+3
2ax^2+3x-1=0有大于0的解
作图:
得△>=0且当a=0
-3/4a>0且a
(1)当a=2时,g(x)=2x^2+3x
h(x)=lnx-2x^2-3x
求导,h'(x)=1/x-4x-3
当h'(x)>0时,h(x)单调递增.
因为x>0,所以:
-4X^2-3x+1>0
解得x∈(-1,1/4)
(2)本题可变型为:存在x>0,使f'(x)=g'(x)
所以,可得:1/x=2ax+3
2ax^2+3x-1=0有大于0的解
作图:
得△>=0且当a=0
-3/4a>0且a