a=2
讨论:①若x>0时方程为 x²+2ax+(a²-4 )=0
若方程有一个实数根,则△=b²-4ac=0,即(2a)²-4*1*(a²-4)=0
整理得4a²-4a²+16=0 此时a不存在.
②若x=0时方程为a²-4=0,a=±2
③若x<0时,方程为x²-2ax+(a²-4)=0
若方程有一个实数根,则△=b²-4ac=0,即(-2a)²-4*1*(a²-4)
整理得4a²-4a²+16=0 此时a不存在.
综上:原方程只有一个实数根时,a=±2
a=2
讨论:①若x>0时方程为 x²+2ax+(a²-4 )=0
若方程有一个实数根,则△=b²-4ac=0,即(2a)²-4*1*(a²-4)=0
整理得4a²-4a²+16=0 此时a不存在.
②若x=0时方程为a²-4=0,a=±2
③若x<0时,方程为x²-2ax+(a²-4)=0
若方程有一个实数根,则△=b²-4ac=0,即(-2a)²-4*1*(a²-4)
整理得4a²-4a²+16=0 此时a不存在.
综上:原方程只有一个实数根时,a=±2