若x+y+z=2,x^2+y^2+z^2=2,1/x+1/y+1/z=1/3,xy+yz+xz=1,xyz=3则 x^3+y^3+z^3=(x^3+y^3+z^3-3xyz)+3xyz=(x+y+z)[(x^2+y^2+z^2)-(xy+yz+xz)]+3xyz=2*(2-1)+3*3=11
若x+y+z=2,x^2+y^2+z^2=2,1/x+1/y+1/z=1/3则 x^3+y^3+z^3=
1个回答
相关问题
-
若1/x+2/y+z/3=4,3/x+2/y+1/z=6.则1/x+1/y+1/z=
-
若(1/x)+(2/y)+(3/z)=5,(3/x)+(2/y)+(1/z)=7,则(1/x)+(1/y)+(1/z)=
-
2x-y=7 x+y+z=25x+3y+z=2 x-2y+z=-1 3x-4z=4 x+2y+3z=-1x+y-z=6x
-
若x,y,z>0,x+y+z=1,求证:(√ 3x+2)+(√3y+2)+(√3z+2)
-
x+2y+3z=1 2x+3y+z=2 3x+y+2z=3
-
-(x-y+z)-2(x-y+z)-3(x-y+z),其中x-=1,y=1/2,z=-2
-
1.x+y+z=21,x-y=1,2x+z-y=13.2.3x+2y+z=13,x+y+2z=7 ,2z+3y-z=12
-
三元一次方程题{x-2y+z=-1 (1){x+y+z=2 (2){x+2y+3z=-1 (3){2x+y-z=2 (1
-
{x+2y+z=8,2x-y-z=-3,3x+y-2z=-1
-
化简求值(2x-y+3z)(-2y-y-3z)-(x+2y-3z)^2,其中X=1,y=-1,z=1