设函数f(x)=x(ex-1)+ax2

1个回答

  • 解题思路:(1)当

    a=−

    1

    2

    时,

    f(x)=x(

    e

    x

    −1)−

    1

    2

    x

    2

    ,由此利用导数性质能求出f(x)的单调区间.

    (2)f(x)=x(ex-1)+ax2=x(ex-1+ax),令g(x)=(ex-1+ax),x∈[0,+∞),由此利用导数性质能求出a的取值范围.

    (1)当a=−

    1

    2时,f(x)=x(ex−1)−

    1

    2x2,

    f'(x)=(ex-1)+xex-x=(x+1)(ex-1)…(2分)

    令f'(x)>0,得x<-1或x>0;

    令f'(x)<0,得-1<x<0

    所以f(x)的单增区间为(-∞,-1),(0,+∞);单减区间为(-1,0).…(5分)

    (2)f(x)=x(ex-1)+ax2=x(ex-1+ax),

    令g(x)=(ex-1+ax),x∈[0,+∞),

    g'(x)=ex+a,g(0)=0…(7分)

    当a≥-1时,g'(x)=ex+a>0,g(x)在[0,+∞)上为增函数,

    而g(0)=0,从而当x≥0时,f(x)≥0恒成立.…(9分)

    当a<-1时,令g'(x)=ex+a=0,得x=ln(-a).

    当x∈(0,ln(-a))时,g'(x)<0,

    g(x)在(0,ln(-a))上是减函数,

    而g(0)=0,从而当x∈(0,ln(-a))时,g(x)<0,即f(x)<0

    综上,a的取值范围是[-1,+∞)…(12分)

    点评:

    本题考点: 利用导数求闭区间上函数的最值;利用导数研究函数的单调性.

    考点点评: 本题考查函数的单调区间的求法,考查实数的取值范围的求法,解题时要认真审题,注意导数性质的合理运用.