由sin(-3x-pi/2)是否等于-sin(3x+pi/2)
3个回答
答案是肯定的.
因为y=sinx是奇函数,sin(-x)=-sinx
相关问题
化简sin(x+PI/3)+2sin(x-PI/3)-根号3*cos(2pi/3-1)
已知函数f(x)=cos(2x-pi/3)+2sin(x-pi)*sin(x+pi/4)
y=3*sin(3*x-pi/2) 和 y= -3*sin(3*x+pi/2) 一样么?
f(2x)=sin (x+3*pi/4)+cos (x-pi/2),
典型三角题.sin(pi/7)+sin(2pi/7)+sin(3pi/7)
化简:sin(2pi-a)sin(pi+a)cos(-pi-a)/sin(3pi-a)cos(pi-a)
y=sin2x·sin(pi/3-2x)最大值.
f(x)h(x)=√2/2sin(x+pi/4)cos(x+5pi/4) =-√2/2sin(x+pi/4)cos(x+
[sin(3pi/10)sin(pi/10)]/[sin(3pi/10)-sin9pi/10)]在线等
Matlab u(x,t)=sin(5*pi*x)cos(5*pi*t)+2sin(7*pi*x)cos(7*pi*t)