1.省略
2.如图AB=AC∠ABD=∠1+45
因为BD\CE所以∠1=∠ECB所以∠2=45-∠ECB=45-∠1
所以∠CAE=90-∠2=90-(45-∠1)=45+∠1
所以∠ABD=∠CAE=45+∠1
又△ABD与△CAE都是直角三角形
所以△ABD全等于△CAE(角角边定理)
所以BD=AE
则BD+DE=AE+DE=AD=CE(等角对等边)
所以BD/CE/DE的关系=BD+DE=CE
注意以△ABC中BC边的高为分界,直线L靠左则BD+DE=CE成立;
靠右则CE+DE=BD成立;