①(3^3+2^3)/(3^3+1^3)
=[(3+2)(3²-3*2+2²)]/[(3+1)(3²-3*1+1²)]
={(3+2)[(3-2)²+3*2]}/{(3+1)[(3-1)²+3*1]}
=(3+2)*7/[(3+1)*7]
=(3+2)/(3+1)
(4^3+3^3)/(4^3+1^3)
=[(4+3)(4²-4*3+3²)]/[(4+1)(4²-4*1+1²)]
={(4+3)[(4-3)²+4*3]}/{(4+1)[(4-1)²+4*1]}
=(4+3)*13/[(4+1)*13]
=(4+3)/(4+1)
经验证,等式(3^3+2^3)/(3^3+1^3)=(3+2)/(3+1)与 (4^3+3^3)/(4^3+1^3)=(4+3)/(4+1)
均成立.
② 再如:(5^3+4^3)/(5^3+1^3)=(5+4)/(5+1)
该规律可表示为:(m^3+n^3)/[m^3+(m-n)^3]=(m+n)/(m+m-n)
③ 原式=(100+99)/(100+1) +(99+97)/(99+2) + (98+95)/(98+3)+...+(51+1)/(51+50)
=199/101 + 196/101 + 193/101 + ...+52/101
=(199+196+193+...+55+52)/101
=[(199+52)+(196+55)+(193+58)+...+(127+124)]/101
=24*251/101
=6024/101