(1)
∵是单位圆
∴半径r=1
∵yA=(7√2)/10,yB=(√5)/5
∴sinα=yA/r=(7√2)/10,sinβ=yB/r=(√5)/5
∵α和β都是锐角
∴cosα>0,cosβ>0
∴cosα=√[1-(sinα)^2]=√{1-[(7√2)/10]^2}=(√2)/10,cosβ=√[1-(sinβ)^2]=√{1-[(√5)/5]^2}=(2√5)/5
∴tanα=sinα/cosα=[(7√2)/10]/[(√2)/10]=7,tanβ=sinβ/cosβ=[(√5)/5]/[(2√5)/5]=1/2
∴tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)=(7+1/2)/(1-7/2)=-3
(2)
∵tanβ=1/2
∴tan(2β)=(2tanβ)/[1-(tanβ)^2]=(2*1/2)/[1-(1/2)^2]=4/3
∵tanα=7
∴tan(α+2β)=[tanα+tan(2β)]/[1-tanαtan(2β)]=(7+4/3)/(1-7*4/3)=-1
∵β是锐角
∴0