如图
在PD上截取一段PF=PE,连接CF
设∠A=2x,∠EBP=∠1,∠FCP=∠2
因为PG是BC的垂直平分线,所以:PB=PC
所以,∠PBC=∠PCB=∠A/2=x
所以,∠FPC=∠PBC+∠PCB=x+x=2x
又,在△PBE和△PCF中:
PB=PC
∠EPB=∠FPC
PE=PF
所以,△PBE≌△PCF(SAS)
所以,BE=CF
如图
在PD上截取一段PF=PE,连接CF
设∠A=2x,∠EBP=∠1,∠FCP=∠2
因为PG是BC的垂直平分线,所以:PB=PC
所以,∠PBC=∠PCB=∠A/2=x
所以,∠FPC=∠PBC+∠PCB=x+x=2x
又,在△PBE和△PCF中:
PB=PC
∠EPB=∠FPC
PE=PF
所以,△PBE≌△PCF(SAS)
所以,BE=CF