(Ⅰ)证明:三棱柱ABC-A1B1C1中,AC∥A1C1,AC=A1C1,连接ED,
可得DE∥AC,DE=[1/2]AC,又F为棱A1C1的中点.∴A1F=DE,A1F∥DE,
所以A1DEF是平行四边形,所以EF∥DA1,
DA1⊂平面A1CD,EF⊄平面A1CD,∴EF∥平面A1CD
(Ⅱ)证明:∵D是AB的中点,∴CD⊥AB,
又AA1⊥平面ABC,CD⊂平面ABC,
∴AA1⊥CD,又AA1∩AB=A,
∴CD⊥面A1ABB1,又CD⊂面A1CD,
∴平面A1CD⊥平面A1ABB1;
(Ⅲ)连结BC1,A1B,
∵AC∥A1C1,∴∠BC1A1是直线BC1与直线AC所成角,
设棱长为2,由题意知A1C1=2,
A1B=C1B=
4+4−2×2×2×cos120°=2
3,
∴cos∠BC1A1=
4+12−12
2×2×2
3=
3
6.
∴直线BC1与直线AC所成角的余弦值为
3
6.