如图,三棱柱ABC-A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等.D,E,F分别为棱AB,BC,A1C1的中点

1个回答

  • (Ⅰ)证明:三棱柱ABC-A1B1C1中,AC∥A1C1,AC=A1C1,连接ED,

    可得DE∥AC,DE=[1/2]AC,又F为棱A1C1的中点.∴A1F=DE,A1F∥DE,

    所以A1DEF是平行四边形,所以EF∥DA1

    DA1⊂平面A1CD,EF⊄平面A1CD,∴EF∥平面A1CD

    (Ⅱ)证明:∵D是AB的中点,∴CD⊥AB,

    又AA1⊥平面ABC,CD⊂平面ABC,

    ∴AA1⊥CD,又AA1∩AB=A,

    ∴CD⊥面A1ABB1,又CD⊂面A1CD,

    ∴平面A1CD⊥平面A1ABB1

    (Ⅲ)连结BC1,A1B,

    ∵AC∥A1C1,∴∠BC1A1是直线BC1与直线AC所成角,

    设棱长为2,由题意知A1C1=2,

    A1B=C1B=

    4+4−2×2×2×cos120°=2

    3,

    ∴cos∠BC1A1=

    4+12−12

    2×2×2

    3=

    3

    6.

    ∴直线BC1与直线AC所成角的余弦值为

    3

    6.