方法如果因式分解等变形题的数字较大,可采用换元法,把大数字换成字母
设1999=a,则2000=(a+1).
所以原式=根号[a(a+1)(a+2)(a+3)+1]
=根号{[a(a+3)][(a+1)(a+2)]+1}
=根号{[a^2+3a][a^2+3a+2]+1}
=根号{[a^2+3a+1]^2-1+1}
=根号{[a^2+3a+1]^2}
=a^2+3a+1
=(a+1)^2+a
=(1999+1)^2+1999
=4001999
方法如果因式分解等变形题的数字较大,可采用换元法,把大数字换成字母
设1999=a,则2000=(a+1).
所以原式=根号[a(a+1)(a+2)(a+3)+1]
=根号{[a(a+3)][(a+1)(a+2)]+1}
=根号{[a^2+3a][a^2+3a+2]+1}
=根号{[a^2+3a+1]^2-1+1}
=根号{[a^2+3a+1]^2}
=a^2+3a+1
=(a+1)^2+a
=(1999+1)^2+1999
=4001999