解题思路:根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出∠ABE,最后根据∠EBC=∠ABC-∠ABE代入数据进行计算即可得解.
∵AB=AC,∠A=36°,
∴∠ABC=[1/2](180°-∠A)=[1/2]×(180°-36°)=72°,
∵DE是AB的垂直平分线,
∴AE=BE,
∴∠ABE=∠A=36°,
∴∠EBC=∠ABC-∠ABE=72°-36°=36°.
故答案为:36°.
点评:
本题考点: 线段垂直平分线的性质;等腰三角形的性质.
考点点评: 本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形的两底角相等的性质,是基础题,熟记性质是解题的关键.