首先需要说一下向量的表示方法 1、代数表示:一般印刷用黑体小写字母α、β、γ … 或a、b、c … 等来表示,手写用在a、b、c…等字母上
加一箭头表示.
2、几何表示:向量可以用有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.(若规定线段AB的端点A为起点,B为终点,则线段就具有了从起点A到终点B的方向和长度.这种具有方向和长度的线段叫做有向线段.)
3、坐标表示:
1) 在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底.a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a.由平面向量基本定理知,有且只有一对实数(x,y),使得 a=向量OP=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y).这就是向量a的坐标表示.其中(x,y)就是点P的坐标.向量OP称为点P的位置向量.
2) 在立体三维坐标系中,分别取与x轴、y轴,z轴方向相同的3个单位向量i,j, k作为一组基底.若a为该坐标系内的任意向量,以坐标原点O为起点作向量OP=a.由空间基本定理知,有且只有一组实数(x,y, z),使得 a=向量OP=xi+yj+zk,因此把实数对(x,y, k)叫做向量a的坐标,记作a=(x,y, z).这就是向量a的坐标表示.其中(x,y, k),也就是点P的坐标.向量OP称为点P的位置向量.
3) 当然,对于空间多维向量,可以通过类推得到(此略).
因此对于sinα=-1在这里是相当于在坐标轴y轴的负半轴上的一个单位向量,因为由sinα=-1,可得α角为3π/2 度,因此,在此时它表示位于y轴的负半轴上的一个单位向量
谢谢