请教一题高等微积分For each of the following functions f(t),determine

1个回答

  • 对下面的函数f(t)而言,判断集合S={f(t):t属於R}是否是光滑曲线,并作出曲线S的草图.检验曲线S在驻点 f'(t)=0的性质.

    解法:由光滑曲线的定义,可知如果沿曲线有连续的切矢量,则该曲线就是光滑曲线.

    如果导数X'(t),Y'(t)都是t的连续的函数,且切矢量(X'(t),Y'(t))非0(非奇异),f'(t)=0处得到的是切矢量的奇点.

    (a)f(t)=(t^2-1,t+1),切矢量为(2t,1),不存在f'(t)=0的奇点,可知对于(a),S一定是光滑

    (b)f(t)=(t^2-1,t^2+1),切矢量为(2t,2t),当t=0是奇点,所以S不光滑

    (c)f(t)=((cost)^3,(sint)^3),切矢量(-3(cost)^2*sint,3(sint)^2*cost),令f'(t)=0有解(例如t=0),S不光滑

    (d)也可以做类似的判断

    直观上看b可知曲线在XY坐标下为(-1,1)到正无穷大的射线,但t是从负无穷大到正无穷大的变化,顺着t的方向在曲线上运动,可以看到过t=0点时切矢量方向发生了180度的反转

    而c在t=0是奇点,当t过t=0时,切矢量的横坐标符号反转,纵坐标符号相同,所以切矢量方向也变了,直观上可判断有尖点存在.