设y=(1/x)^tanx=
lny=tanx*ln(1/x)
lim0> lny=lim tanx*ln(1/x)=lim ln(1/x)/ctanx=lim (-1/x)/(-csc²x)=lim sin²x/x=lim sinx/x * sinx=1*0=0
lim0>lny=0
所以 lim(1/x)∧tanx=e^0=1
设y=(1/x)^tanx=
lny=tanx*ln(1/x)
lim0> lny=lim tanx*ln(1/x)=lim ln(1/x)/ctanx=lim (-1/x)/(-csc²x)=lim sin²x/x=lim sinx/x * sinx=1*0=0
lim0>lny=0
所以 lim(1/x)∧tanx=e^0=1