cosA=(AB²+AC²-BC²)/(2AB•AC)=1/2
cosB=(AB²+BC²-AC²)/(2AB•BC)= √7/14
故:sinA=√3/2,sinB=3√21/14
又:BC/sinA=2R,故:R=√21/3=∣OA∣=∣OB∣
故:AD=BD=1
故:cos∠BAO=√21/7,sin∠BAO=2√7/7
故:cos∠AEB=-cos(∠B+∠BAO)
= -cosB•cos∠BAO+sinB•sin∠BAO
=5√3/14
故:向量AO•向量BC=∣OA∣•∣BC∣•cos∠AEB=5/2