解题思路:(1)先根据求导法求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间及极值即可.
(2)欲证x>ln2x-2a ln x+1,即证x-1-ln2x+2alnx>0,也就是要证f(x)>f(1),根据第一问的单调性即可证得.
(Ⅰ)根据求导法则有f′(x)=1−
2lnx
x+
2a
x,x>0,
故F(x)=xf'(x)=x-2lnx+2a,x>0,
于是F′(x)=1−
2
x=
x−2
x,x>0,
∴知F(x)在(0,2)内是减函数,在(2,+∞)内是增函数,
所以,在x=2处取得极小值F(2)=2-2ln2+2a.
(Ⅱ)证明:由a≥0知,F(x)的极小值F(2)=2-2ln2+2a>0.
于是知,对一切x∈(0,+∞),恒有F(x)=xf'(x)>0.
从而当x>0时,恒有f'(x)>0,故f(x)在(0,+∞)内单调增加.
所以当x>1时,f(x)>f(1)=0,即x-1-ln2x+2alnx>0.
故当x>1时,恒有x>ln2x-2alnx+1.
点评:
本题考点: 利用导数研究函数的单调性;函数恒成立问题;利用导数研究函数的极值.
考点点评: 本题主要考查学生综合运用导数知识分析问题、解决问题的能力,本小题主要考查函数的导数,单调性,不等式等基础知识.