在数列{an}中,a1=1,且4a (n+1)-ana(n+1)+2an=9【括号内均为下标】,通过计算a2,a3,a4

2个回答

  • an= (6n-5)/(2n-1)

    4a2-a2+2=9

    a2=7/3

    4a3-(7/3)a3+14/3=9

    a3=13/5

    4a4-(13/5)a4+26/5=9

    a4=19/7

    ……

    an= (6n-5)/(2n-1)

    证明:对n进行归纳,设第n项成立

    下面检验n+1项:

    即看看4a(n+1)-anan+1+2an是否为9

    因为:an=(6n-5)/(2n-1)

    所以:a(n+1)=(6n+1)/(2n+1)

    4a(n+1)-anan+1+2an

    =4(6n+1)/(2n+1)-(6n-5)(6n+1)/(2n+1)(2n-1)+2(6n-5)/(2n-1)

    =[4(6n+1)(2n-1)+2(6n-5)(2n+1)]/(2n+1)(2n-1)-(6n-5)(6n+1)/(2n+1)(2n-1)

    =[4(6n+1)(2n-1)-(6n-5)(2n-1)]/(2n+1)(2n-1)

    =[(2n-1)(24n+4-6n+5)]/(2n+1)(2n-1)

    =(2n-1)(18n-9)/(2n+1)(2n-1)=9(2n-1)(2n+1)/(2n+1)(2n-1)

    =9

    证毕!