如图,在直角三角形ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AD、AC于点

1个回答

  • 郭敦顒回答:

    ∵在Rt⊿ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AD、AC于点E、F,点H是EF的中点.

    (1)∵BF是∠ABC的平分线,∴∠ABF=∠DBE,

    在Rt⊿BAF与Rt⊿BDE中,∠BAF=∠BDE中=90°,

    ∴∠AFB=∠DEB(两△中,两对应角相等,则第三角相等),

    ∵∠AFB=∠AFE(同角),∠DEB=∠AEF(对顶角),

    ∴∠AFE=∠AEF,∴AF=AE,

    ∴△AEF是等腰三角形.

    (2)在Rt⊿BAF与Rt⊿BDE中,

    ∵BF是∠ABC的平分线,∴∠ABF=∠DBE,

    ∴Rt⊿BAF∽Rt⊿BDE.

    (3)设△AHF、△BDE、△BAF的周长分别为C1 C2 C3.

    求证 (C1+C2)/C3≤9/8,并求出当等号成立时式子AF/BE的值.

    验证:

    当AB=AC时,并令AB=AC=1,则∠ABF=∠FAH=22.5°,

    ∴BD=(1/2)√2=0.70710678

    AE=AF=1•tan22.5°=0.41421356,

    BF=1/ cos22.5°=1.0823922

    AH=AF•cos22.5°=0.41421356×0.9238795=0.3826834

    FH= AF•sin 22.5°=0.41421356×0.38268343=0.15851267

    DE=(1/2)√2-AE=0.70710678-0.41421356=0.2928932

    BE=BF-2FH=1.0823922-2×0.15851267=0.76536686

    C1= AH+ FH+AF=0.3826834+0.15851267+0.41421356=0.95540963

    C2=BD+DE+BE=0.70710678+ 0.2928932+0.76536686=1.765366845

    (C1+C2)=0.95540963+1.765366845=2.720776476

    C3=AB+AF+BF=1+0.41421356+1.0823922=2.49660576

    (C1+C2)/C3=2.720776476/2.49660576=1.08979< 9/8=1.125

    当∠ABC=60°,∠ABF=∠CBF=∠ACB=∠FAH=30°时,令AB=1,则

    ∴BD=1/2=0.5

    AE=AF=1•tan30°=0.57735,

    BF=1/ cos30°=1.1547,

    AH=AB•sin 30°=0.5,

    FH= AF/2=0.288675,

    DE=0.5×tan30°=0.288675,

    BE=2DE=0.57735,

    C1= AH+ FH+AF=0.5+0.288675+0.57735=1.366025,

    C2=BD+DE+BE=0.5+ 0.288675+0.57735,=1.366025,

    (C1+C2)=1.366025+1.366025=2.73205,

    C3=AB+AF+BF=1+0.57735+1.1547=2.73205

    (C1+C2)/C3=2.73205/2.73205=1 < 9/8=1.125

    当∠ABC=30°,∠ABF=∠CBF=∠FAH=15°时,令AB=1,则

    ∴BD=0.8660254,AD= 0.5,

    AE=AF=1•tan15°=0.2679492,

    BF=1/ cos15°=1.035276,

    AH=1•sin 15°=0.258819,

    FH= AF•sin 15°=0.2679492×0.258819=0.06935,

    DE=0.5-AE=0.5-0.2679492==0.2320508,

    BE=BF-2FH=1.035276-2×0.06935=0.896576,

    C1= AH+ FH+AF=0.258819,+0.06935+0.2679492=0.5961182,

    C2=BD+DE+BE=0.8660254+ 0.2320508+0.896576=1.9946522,

    (C1+C2)=0.5961182+1.9946522=2.5907704,

    C3=AB+AF+BF=1+0.2679492+1.035276=2.303225

    (C1+C2)/C3=2.5907704/2.303225≈1.125 = 9/8=1.125

    ∵AF=1•tan15°=0.2679492,

    BE=BF-2FH=1.035276-2×0.06935=0.896576,

    ∴AF/BE=0.2679492/0.896576=0.298858.