P(x,y)
则PA²*PB²=2
所以[(x+1)²+y²][(x-1)²+(y-1)²]=2
(x²-1)²+(xy-x+y-1)²+(xy-y)²+(y²-y)²=2
x^4+2x²y²+y^4-2y³-2x²y-x²-4xy+3y²+2x-2y=0
P(x,y)
则PA²*PB²=2
所以[(x+1)²+y²][(x-1)²+(y-1)²]=2
(x²-1)²+(xy-x+y-1)²+(xy-y)²+(y²-y)²=2
x^4+2x²y²+y^4-2y³-2x²y-x²-4xy+3y²+2x-2y=0