- [(√3+√6)/√3]
= - [(√3/√3+√6/√3]
= - (1+√2)
= - 1-√2
原式=√18 -√(9/2)- [(√3+√6)/√3]+(√3-1)^0+√(1-√2)^2
=√2x9 -√(9/2)- [(√3+√6)/√3]+(√3-1)^0+√(√2-1)^2
=3√2 -3/√2- [(√3+√6)/√3]+1+√(√2-1)^2
=3√2 -3√2/2- 1-√2+1+(√2-1)
=3√2/2-1
- [(√3+√6)/√3]
= - [(√3/√3+√6/√3]
= - (1+√2)
= - 1-√2
原式=√18 -√(9/2)- [(√3+√6)/√3]+(√3-1)^0+√(1-√2)^2
=√2x9 -√(9/2)- [(√3+√6)/√3]+(√3-1)^0+√(√2-1)^2
=3√2 -3/√2- [(√3+√6)/√3]+1+√(√2-1)^2
=3√2 -3√2/2- 1-√2+1+(√2-1)
=3√2/2-1