cos(π/3+a)=1/3
→cos^2 (π/3+a)=1/9
→2cos^2 (π/3+a)-1=-7/9;
即cos(2π/3+2a)=-7/9;
则cos(-2π/3-2a)=-7/9;
则cos[(-2π/3-2a)+π]=+7/9;
即cos(π/3-2a)=7/9;
a∈(0,π),则
π/3+a∈(π/3,4π/3);
而cos(π/3+a)=1/3>0,
则说明π/3<π/3+a<π/2.
→0<a<π/6;
→π/3-2a∈(0,π/3);
则sin(π/3-2a)>0;
sin(π/3-2a)=√[1-cos^2 (π/3+a)]
=(2√2)/3