f'(x)=6x^2+6ax+3b
(1)由题意可知:
f'(1)=6+6a+3b=0
f'(2)=24+12a+3b=0
解得:a=-3、b=4
(2)f(x)=2x^3-9x^2+12x+8c
f'(x)=6x^2-18x+12=6(x-1)(x-2)
f(1)=5+8c、f(2)=4+8c、f(3)=9+8c.
所以,x∈[1,3]时,f(x)的最大值为f(3)=9+8c.
f'(x)=6x^2+6ax+3b
(1)由题意可知:
f'(1)=6+6a+3b=0
f'(2)=24+12a+3b=0
解得:a=-3、b=4
(2)f(x)=2x^3-9x^2+12x+8c
f'(x)=6x^2-18x+12=6(x-1)(x-2)
f(1)=5+8c、f(2)=4+8c、f(3)=9+8c.
所以,x∈[1,3]时,f(x)的最大值为f(3)=9+8c.