任取x1>x2
f(x1)-f(x2)
=x1^3-x2^3
立方差
=(x1-x2)(x1^2+x1x2+x2^2)
=(x1-x2)(x1^2+x1x2+1/4x2^2+3/4x2^2)
=(x1-x2)[(x1+1/2x2)^2+3/4x2^2]
x1-x2>0
右边为平方数之和也大于0
所以f(x1)-f(x2)>0
∴函数y=x^3在R上递增
任取x1>x2
f(x1)-f(x2)
=x1^3-x2^3
立方差
=(x1-x2)(x1^2+x1x2+x2^2)
=(x1-x2)(x1^2+x1x2+1/4x2^2+3/4x2^2)
=(x1-x2)[(x1+1/2x2)^2+3/4x2^2]
x1-x2>0
右边为平方数之和也大于0
所以f(x1)-f(x2)>0
∴函数y=x^3在R上递增