求证:(1)2 (1-sinA)(1+cosA)=(1-sinA+cosA)^2 (2)[tanAsinA]/[tanA

1个回答

  • (1)(1-sinA+cosA)^2=(1-sinA)^2+2(1-sinA)cosA+(cosA)^2

    =(1-sinA)^2+2(1-sinA)cosA+1-(sinA)^2

    =(1-sinA)^2+2(1-sinA)cosA+(1-sinA)(1+sinA)

    =(1-sinA)(1-sinA+2cosA+1+sinA)

    =2(1-sinA)(1+cosA)

    (2) [tanAsinA]/[tanA-sinA]=[tanA+sinA][tanAsinA] 等价于(tanAsinA)^2=(tanA)^2-(sinA)^2

    (tanA)^2-(sinA)^2=(tanA)^2-(tanAcosA)^2=(tanA)^2[1-(cosA)^2]=(tanAsinA)^2