(2014•丹徒区二模)已知一次函数y=kx+b经过点B(-1,0),与反比例函数y=[k/x]交于点A(1,4).

1个回答

  • 解题思路:(1)根据待定系数法就可以求出函数的解析式;

    (2)由∠BAD=90°,所以直线AD与直线AB垂直,设直线AD的解析式为y=-[1/2]x+m,直线AD经过点A(1,4),求得直线AD的解析式,再求点D的坐标即可.

    (1)∵点A(1,4)在反比例函数图象上

    ∴k=4

    即反比例函数关系式为y=[4/x]

    ∵点A(1,4)和B(-1,0)在一次函数y=kx+b的图象上

    4=k+b

    0=−k+b

    解得

    k=2

    b=2,

    所以一次函数的解析式为:y=2x+2;

    (2)∵∠BAD=90°,

    ∴直线AD与直线AB垂直,

    ∴设直线AD的解析式为y=-[1/2]x+m,

    直线AD经过点A(1,4)

    ∴4=−

    1

    2+m,

    m=[9/2],

    ∴y=−

    1

    2x+

    9

    2,

    当y=0时,0=−

    1

    2x+

    9

    2,x=9,

    ∴点D的坐标为(9,0).

    点评:

    本题考点: 反比例函数与一次函数的交点问题.

    考点点评: 本题主要考查了反比例函数与一次函数的交点问题.用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.