tanθ=tan(θ+派/4-派/4)
=[tan(θ+派/4)-tan(派/4)]/[1+tan(θ+派/4)tan(派/4)]
=(3+√2-1)/(1+3+√2)=(2+√2)/(4++√2)
=(3++√2)/7
(1/cosθ)^2=(tanθ)^2+1=(12+6√2)/49
(cos++√2)^2=49(6-3√2)/36
cosθ=(7/6)*根号(6-3√2)
tanθ=tan(θ+派/4-派/4)
=[tan(θ+派/4)-tan(派/4)]/[1+tan(θ+派/4)tan(派/4)]
=(3+√2-1)/(1+3+√2)=(2+√2)/(4++√2)
=(3++√2)/7
(1/cosθ)^2=(tanθ)^2+1=(12+6√2)/49
(cos++√2)^2=49(6-3√2)/36
cosθ=(7/6)*根号(6-3√2)