设f(x)在[0,1]上连续且在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.证明:(1)至少有一点m属
3个回答
1)令g(x)=f(x)-x 因为f(x)在[0,1]内连续 所以g(x)在(0,1)内也是连续的
又当x=1 时g(1)=0-1=-10
即g(1)*g(1/2)
相关问题
设函数f(x)在[0,1]上连续,在(0,1)内可导且f(0)=f(1)=0,f([1/2])=1,试证明至少存在一点ξ
微积分 设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(0)=f(1)=0.证明:至少
设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=f(0)=0,f(1/2)=1,试证:至少存在一个§€(0
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明存在ξ∈(0,1),使得f(ξ)=1
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f([1/2])=1.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f([1/2])=1.
设函数f(x)在【0,2】上连续,在(0,2)内可导,且f(0)+f(1)=2.f(2)=1,证明;至少存在一点属于(0
一道证明题设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,证明存在t属于(0,1),使f'(
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明:至少存在一点a属于(0,1),使f(a)
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0 ,记M=max{ l f(x) l ,x∈[