求函数Y=3sinx-3/2cos+10的最值谢谢!

1个回答

  • y=(3sinx-3)/(2cosx+10)

    =-3(1-sinx)/2(cosx+5)

    =-3[sin(x/2)-cos(x/2)]^2/2[2(cos(x/2))^2-1+5]

    =-3[sin(x/2)-cos(x/2)]^2/4[(cos(x/2))^2+2]

    =-3[sin(x/2)-cos(x/2)]^2/4[(3cos(x/2))^2+2(sin(x/2))^2]

    令t=tan(x/2)

    ∴y=(-3/4)*(t-1)^2/(2t^2+3)

    变形:(8y+3)t^2-6t+(3+12y)=0

    △=6^2-4(8y+3)(3+12y)

    =36-12(8y+3)(1+4y)=36-12(8y+32y^2+3+12y)

    =-12(32y^2+20y)

    =-12*4y(8y+5)≥0

    解得:-5/8≤y≤0

    ∴值域[-5/8,0]