0/0用洛必达法则,原式=(sinx+x*cosx)/sinx=(2cosx-x*sinx)/cosx=2 x无限趋近于0
修改:
x不等于0时,(x*sinx)/(1-cosx)
=(x*2sin(x/2)cos(x/2))/(2(sin(x/2))^2)
=(x*cos(x/2))/(sin(x/2))
故所求为limx->0 (x*cos(x/2))/(sin(x/2))
=2(limx->0 cos(x/2))/limx/2->0 (sin(x/2))/(x/2)=2
运用到重要极限:limx->0 sinx/x=1