设正方体棱长为1
延长DA至E,使AE=BM=1/2
则:∠EBD1 = D1B与AM所成的夹角
BE=√(1+(1/2)^2)=√5/2
ED1=√(1+(3/2)^2)=√10/2
BD1=√3
cos∠EBD1=(BE^2+BD1^2-ED1^2)/2*BE*BD1
=(5/4+3-10/4)/√15
=7√15/60
设正方体棱长为1
延长DA至E,使AE=BM=1/2
则:∠EBD1 = D1B与AM所成的夹角
BE=√(1+(1/2)^2)=√5/2
ED1=√(1+(3/2)^2)=√10/2
BD1=√3
cos∠EBD1=(BE^2+BD1^2-ED1^2)/2*BE*BD1
=(5/4+3-10/4)/√15
=7√15/60