解题思路:通过题意,甲取1块,乙取2块,甲取4块,乙取8块,…,1=20,2=21,4=22,8=23…,可以看出,甲取的块数是20+22+24+26+28+…,相应的乙取得块数是21+23+25+27+29+…,我们看一看90是甲取了几次,乙相应的取了多少次,把两者总数加起来,即可得解.
甲取的糖果数是20+22+24+…+22n=90,
因为1+4+16+64+5=90,
所以甲共取了5次,4次完整的,最后的5块是包裹中的糖果少于应取的块数,说明乙取了4次完整的数,
即乙取了21+23+25+27=2+8+32+128=170(块),
90+170=260(块),
答:最初包裹中有 260块糖果.
故答案为:260.
点评:
本题考点: 哈密尔顿圈与哈密尔顿链.
考点点评: 判断出甲乙取得次数是解决此题的关键.