设m,n∈z,已知函数f(x)=log2(-|x|+4)的定义域是[m,n],值域是[0,2],若函数g(x)=2|x-

1个回答

  • 解题思路:由关于x的方程2|x-1|+m+1=0有唯一的实数解,我们易得m的值,然后根据函数f(x)=log2(-|x|+4)的定义域是[m,n],值域是[0,2],结合函数f(x)=log2(-|x|+4)的性质,可求出n的值,进而得到答案.

    ∵f(x)=log2(-|x|+4)的值域是[0,2],

    ∴(-|x|+4)∈[1,4]

    ∴-|x|∈[-3,0]

    ∴|x|∈[0,3]…①

    若若关于x的方程2|x-1|+m+1=0有唯一的实数解

    则m=-2

    又由函数f(x)=log2(-|x|+4)的定义域是[m,n],

    结合①可得n=3

    即:m+n=1

    故选C

    点评:

    本题考点: 函数零点的判定定理;对数函数的定义域.

    考点点评: 本题考查的知识点是根的存在性及根的个数的判断,对数函数的定义域及对数函数的值域,其中利用关于x的方程2|1-x|+m+1=0有唯一的实数解,变形得到关于x的方程2|1-x|+1=-m有唯一的实数解,即-m为函数y=2|1-x|+1的最值,是解答本题的关键.