微元法 微分 积分ΔE=(1/2)k(x+Δx)^2-(1/2)kx^2=kx*Δx+1/2(Δx)^2.(2)上式说明

1个回答

  • 这个很简单的啊,其实用微元法也用到了近似,dE=kxdx的意思是,弹簧伸长量为x时,其弹力为kx,那么如果弹簧再伸长或者缩短一个非常非常小的长度dx,我们可以认为弹簧的弹力基本是不变的,那么在这么段的一个长度上就相当于恒力做功,做功的大小就是dE=(kx)×dx

    另外,功也是有几何定义的,功的几何定义就是在F-S图上的曲线与X轴所包围的面积,我们可以看到,弹簧的F-S图是通过原点的一条射线,它与X轴包围的面积就等于0.5kx^2,这就是一开始用到的ΔE=(1/2)k(x+Δx)^2-(1/2)kx^2=kx*Δx+1/2(Δx)^2这个式子的由来,表明弹簧力做功与弹簧的伸长量有直接的关系.

    上式中kx*Δx称为一阶无穷小或同阶无穷小,他的特征是除以无穷小量后是一个有限值,比如kx*Δx/Δx=kx,kx在Δx趋于无穷小时还是有限值.

    而1/2(Δx)^2是一个二阶无穷小,因为1/2(Δx)^2/Δx=0.5Δx,当Δx在趋近于无穷小时,0.5Δx还是无穷小.

    一般来说如果一个式子f(Δx)/(Δx)^n在Δx趋近于0时其值为一常数,那么就称f(Δx)为Δx的n阶无穷小,n大于2时都称为高阶无穷小.

    由于高阶无穷小1/2(Δx)^2在Δx在趋近于零时比kxΔx的减小速度快得多,因此一般是可以忽略高阶无穷小的影响的,这就是我说的“可以认为弹簧的弹力基本是不变的”的理由.