数分问题设f和g为(a,b)内的增函数,证函数a(x)=max【f(x),g(x)】也在(a,b)上递增分四种情况讨论1
1个回答
只是方便求出比较而已
x1,x2满足a
相关问题
设函数f(x)·g(x)在区间(a,b)内单调递增,证明函数h(x)=max{f(x),g(x)}与h(x)=min{f
已知函数f(x)、g(x)在(a,b)上是增函数,且a<g(x)<b,求证:f(g(x))在(a,b)上也是增函数.
在区间(a,b)上,函数f(x),g(x)都是增函数,则F(x)=f(x)g(x)在(a,b)上是
若f(x),g(x)在[a,b] 上连续,证明max( f(x) ,g(x ))在[a,b]上连续
设函数f(x),g(x)在(a,b)内可导,对任意的x∈(a,b),g(x)≠0,并且在(a,b)内f(x)g'(x)-
一个高数问题1.设函数 f(x)和g(x) 在闭区间 [a,b]上连续,在开区间(a,b) 内可导,且f(a)=f(b)
一条简单的函数连续和极限问题设函数f(x)、g(x)在区间[a,b]上连续,且f(a)>g(a),f(b)
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,g(x)
设f(x),g(x)都是区间(a,b)上的单调增函数,并且在该区间上f(x)小于等于g(x),试证f(f(x))小于等于
f(x),g(x)是在 [a,b] 上的函数,f(a)>=g(x),f(b)