解题思路:求出∠DCE=∠ACB,根据SAS证△DCE≌△ACB,根据全等三角形的性质即可推出答案.
证明:∵∠DCA=∠ECB,
∴∠DCA+∠ACE=∠BCE+∠ACE,
∴∠DCE=∠ACB,
∵在△DCE和△ACB中
DC=AC
∠DCE=∠ACB
CE=CB,
∴△DCE≌△ACB,
∴DE=AB.
点评:
本题考点: 全等三角形的判定与性质.
考点点评: 本题考查了全等三角形的性质和判定的应用,主要考查学生能否运用全等三角形的性质和判定进行推理,题目比较典型,难度适中.
解题思路:求出∠DCE=∠ACB,根据SAS证△DCE≌△ACB,根据全等三角形的性质即可推出答案.
证明:∵∠DCA=∠ECB,
∴∠DCA+∠ACE=∠BCE+∠ACE,
∴∠DCE=∠ACB,
∵在△DCE和△ACB中
DC=AC
∠DCE=∠ACB
CE=CB,
∴△DCE≌△ACB,
∴DE=AB.
点评:
本题考点: 全等三角形的判定与性质.
考点点评: 本题考查了全等三角形的性质和判定的应用,主要考查学生能否运用全等三角形的性质和判定进行推理,题目比较典型,难度适中.