已知a.b.c成等比数列
所以a*c=b^2
根据正弦定理,a/sinA=b/sinB=c/sinC
所以有sinA* sinC= sin^2B.
又因为cosB=3/4 sin^2 B+cos^2 B=1
sinB=√7/4
1/tanA+1/tanc=cosA/sinA+cosC/sinC
=(cosA*sinC+sinA*cosC)/(sinA*sinC)
=sin(A+C)/[ sin^2B]
=sinB/[ sin^2B]
=1/sinB
=4/(√7)=4√7/7.
已知a.b.c成等比数列
所以a*c=b^2
根据正弦定理,a/sinA=b/sinB=c/sinC
所以有sinA* sinC= sin^2B.
又因为cosB=3/4 sin^2 B+cos^2 B=1
sinB=√7/4
1/tanA+1/tanc=cosA/sinA+cosC/sinC
=(cosA*sinC+sinA*cosC)/(sinA*sinC)
=sin(A+C)/[ sin^2B]
=sinB/[ sin^2B]
=1/sinB
=4/(√7)=4√7/7.