解题思路:根据CE∥AB可得△ABD和△ECD相似,根据相似三角形对应边成比例可得[DE/AD]=[EC/AB],根据角平分线的定义可得∠EAF=∠CAE,根据两直线平行,内错角相等可得∠EAF=∠AEC,然后求出∠AEC=∠CAE,根据等角对等边可得AC=EC,整理即可得证.
证明:∵CE∥AB,
∴△ABD∽△ECD,
∴[DE/AD]=[EC/AB],
∵AD是∠BAC的外角平分线,
∴∠EAF=∠CAE,
∵CE∥AB,
∴∠EAF=∠AEC,
∴∠AEC=∠CAE,
∴AC=EC,
∴[DE/AD]=[AC/AB],
∴AB•DE=AD•AC.
点评:
本题考点: 相似三角形的判定与性质.
考点点评: 本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,熟记三角形相似的判定与性质是解题的关键.