f(x)=sin2wx-cos2wx-1=√2sin(2wx-π/4)-1
两条对称轴之间的距离等于π/2,则最小正周期T=π.T=2π/(2w)=π,w=1.
f(x)=√2sin(2x-π/4)-1.
1)f(π/4)=√2sin(π/2-π/4)-1=√2sinπ/4-1=0.
2)0
f(x)=sin2wx-cos2wx-1=√2sin(2wx-π/4)-1
两条对称轴之间的距离等于π/2,则最小正周期T=π.T=2π/(2w)=π,w=1.
f(x)=√2sin(2x-π/4)-1.
1)f(π/4)=√2sin(π/2-π/4)-1=√2sinπ/4-1=0.
2)0