二倍角公式:
sin2α = 2cosαsinα
cos2a=2cosa^2-1=1-2sina^2=cosa^2-sina^2
tan2α=2tanα/[1-(tanα)^2]
sina=5/13,a∈(π/2,π)
cosa=-12/13
tana=-5/12
sin2a=2sanacosa=2*(5/13)*(-12/13)=-120/169
cos2a=2cos^2(a)-1=119/169
tan2a=2tana/(1-tan^2a)=-120/119
二倍角公式:
sin2α = 2cosαsinα
cos2a=2cosa^2-1=1-2sina^2=cosa^2-sina^2
tan2α=2tanα/[1-(tanα)^2]
sina=5/13,a∈(π/2,π)
cosa=-12/13
tana=-5/12
sin2a=2sanacosa=2*(5/13)*(-12/13)=-120/169
cos2a=2cos^2(a)-1=119/169
tan2a=2tana/(1-tan^2a)=-120/119