解题思路:由四边形ABCD是矩形,可得:∠A=∠B=∠D=90°,CD=AB=4,AD=BC=5,由折叠的性质可得:∠EFC=∠B=90°,CF=BC=5,由同角的余角相等,即可得∠DCF=∠AFE,然后在Rt△DCF中,即可求得答案.
∵四边形ABCD是矩形,
∴∠A=∠B=∠D=90°,CD=AB=4,AD=BC=5,
由题意得:∠EFC=∠B=90°,CF=BC=5,
∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°,
∴∠DCF=∠AFE,
∵在Rt△DCF中,CF=5,CD=4,
∴DF=3,
∴tan∠AFE=tan∠DCF=[DF/DC]=[3/4].
故选C.
点评:
本题考点: 翻折变换(折叠问题);矩形的性质;锐角三角函数的定义.
考点点评: 此题考查了折叠的性质,矩形的性质以及三角函数的性质.解此题的关键是数形结合思想与转化思想的应用.