等腰△ABC中,三边分别为a、b、c,其中a=5,若关于x的方程x²+(b+2)x+6-b=0,有两个相等的实
1个回答
判别式△=(b+2)^2-4(6-b)=b^2+8b-20=0
(b+10)(b-2)=0
b=2
a=5
a+b>c c
相关问题
等腰△ABC的三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,则△AB
等腰△ABC的三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,则△AB
等腰△ABC的三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,则△AB
已a、b、c分别为△ABC中∠A、∠B、∠C的对边,若关于x的方程(b+c)x2-2ax+c-b=0有两个相等的实根且s
已知关于X的方程(X+A)(X+B)+(X+B)(X+C)+(X+A)(X+C)=0,其中ABC均为整数,有两个相等的实
若a.b.c是三角形ABC的三边,且关于X的一元二次方程(c-b)x^2+2(b-a)x+(a-b)=0有两个相等的实根
在等腰三角形ABC中,三边的长度分别是abc,其中a=3.若关于x的方程x²+bx+b+3=0有两个相等的实数根,求
已知△ABC的三边长为abc且关于x的方程(c-b)x2+2(b-a)x+(a-b)=0有两个相等的实数根
已知a,b,c是△ABC的三边,c=5,并且关于x的方程(b+c)x^2+2ax+(c-b)=0有两个相等实数根,a,b
在等腰△ABC中,三边的长分别为a、b、c,其中a=4,另外两边b,c恰好是关于x的方程x2-(2k+1)x+4(k-1