(1)证明:∵a n+1=2S n+2 n+1-1(n≥1),
当n≥2时,a n=2S n-1+2 n-1,两式相减得a n+1=3a n+2 n(n≥2).
从而b n+1=a n+1+2 n+1=3a n+2 n+2 n+1=3(a n+2 n)=3b n(n≥2).
∵S 2=3S 1+2 2-1,即a 1+a 2=3a 1+3,∴a 2=2a 1+3=5,
∴b 2≠0,b n≠0,
∴
b 2
b 1 =
a 2 +4
a 1 +2 =
9
3 =3 .故
b n+1
b n =3 (n=1,2,3…)
∴数列{b n}是公比为3,首项为3的等比数列.
(2)由(1)知,b n=3•3 n-1=3 n,b n=a n+2 n得a n=3 n-2 n,
∴ c n =
2 n
(1+ 3 n - a n )(1+ 3 n+1 - a n+1 ) =
2 n
(1+ 2 n )(1+ 2 n+1 ) ,
则 c n =
2 n
(1+ 2 n )(1+ 2 n+1 ) =
1
1+ 2 n -
1
1+ 2 n+1 .
∴ c 1 + c 2 +…+ c n =
1
1+ 2 1 -
1
1+ 2 2 +
1
1+ 2 2 -
1
1+ 2 3 +…+
1
1+ 2 n -
1
1+ 2 n+1
=
1
3 -
1
1+ 2 n+1 .