(文科)已知数列{a n }的首项a 1 =1,前n项和为S n ,且a n+1 =2S n +2 n -1(nϵN *

1个回答

  • (1)证明:∵a n+1=2S n+2 n+1-1(n≥1),

    当n≥2时,a n=2S n-1+2 n-1,两式相减得a n+1=3a n+2 n(n≥2).

    从而b n+1=a n+1+2 n+1=3a n+2 n+2 n+1=3(a n+2 n)=3b n(n≥2).

    ∵S 2=3S 1+2 2-1,即a 1+a 2=3a 1+3,∴a 2=2a 1+3=5,

    ∴b 2≠0,b n≠0,

    b 2

    b 1 =

    a 2 +4

    a 1 +2 =

    9

    3 =3 .故

    b n+1

    b n =3 (n=1,2,3…)

    ∴数列{b n}是公比为3,首项为3的等比数列.

    (2)由(1)知,b n=3•3 n-1=3 n,b n=a n+2 n得a n=3 n-2 n

    ∴ c n =

    2 n

    (1+ 3 n - a n )(1+ 3 n+1 - a n+1 ) =

    2 n

    (1+ 2 n )(1+ 2 n+1 ) ,

    则 c n =

    2 n

    (1+ 2 n )(1+ 2 n+1 ) =

    1

    1+ 2 n -

    1

    1+ 2 n+1 .

    ∴ c 1 + c 2 +…+ c n =

    1

    1+ 2 1 -

    1

    1+ 2 2 +

    1

    1+ 2 2 -

    1

    1+ 2 3 +…+

    1

    1+ 2 n -

    1

    1+ 2 n+1

    =

    1

    3 -

    1

    1+ 2 n+1 .