求微分方程的通解xy'-2y=x3cosx
dy/y=2dx/x==>ln│y│=2ln│x│+ln│C│ (C是积分常数)==>y=Cx²∴设原方程"}}}'>

1个回答

  • (应用常数变易法)

    ∵xy'-2y=0 ==>dy/y=2dx/x

    ==>ln│y│=2ln│x│+ln│C│ (C是积分常数)

    ==>y=Cx²

    ∴设原方程的解为y=C(x)x² (C(x)表示关于x的函数)

    ∵代入原方程,得C'(x)x³+2C(x)x²-2C(x)x²=x³cosx

    ==>C'(x)x³=x³cosx

    ==>C'(x)=cosx

    ==>C(x)=sinx+C (C是积分常数)

    ∴y=C(x)x²=(sinx+C)x²

    故原方程的通解是y=(sinx+C)x² (C是积分常数).