c=√(a²+b²)
e1=c/a,e2=c/b
e1+e2=c*(1/a+1/b)=c(a+b)/(ab)
(e1+e2)²=c²*(a+b)²/(a²b²)
=(a²+b²)(a+b)²/(a²b²)
≥ 2ab *(2√ab)²/(a²b²)
= 8
当且仅当a=b时等号成立
e1+e2的最小值为2√2
c=√(a²+b²)
e1=c/a,e2=c/b
e1+e2=c*(1/a+1/b)=c(a+b)/(ab)
(e1+e2)²=c²*(a+b)²/(a²b²)
=(a²+b²)(a+b)²/(a²b²)
≥ 2ab *(2√ab)²/(a²b²)
= 8
当且仅当a=b时等号成立
e1+e2的最小值为2√2