怎样证明三角函数的和差化积公式sinA+sinB=2*sin[(A+B)/2]*cos[(A-B)/2] sinA-si

2个回答

  • 第一个公式的证明:

    右边=2*sin[(A+B)/2]*cos[(A-B)/2]

    =2*[sin(A/2)*cos(B/2)+cos(A/2)sin(B/2)]*[cos(A/2)cos(B/2)+sin(A/2)sin(B/2)]

    =2*sin(A/2)*cos(A/2)*cos(B/2)*cos(B/2)+2*cos(A/2)*cos(A/2)*sin(B/2)*cos(B/2)+2*sin(A/2)*sin(A/2)*cos(B/2)*sin(B/2)+2*sin(A/2)*cos(A/2)*sin(B/2)*sin(B/2)

    =sinA*[cos(B/2)*cos(B/2)+sin(B/2)*sin(B/2)]+sin(B/2)*[cos(B/2)*cos(B/2)+sin(B/2)*sin(B/2)]

    =sinA+sinB=左边

    证毕

    其中用到公式:

    sinA=2*sin(A/2)*cos(A/2),sinB=2*cos(B/2)*sin(B/2)

    cos(B/2)*cos(B/2)+sin(B/2)*sin(B/2)=1

    其他的公式依此类推,自己推推看吧!