第一个公式的证明:
右边=2*sin[(A+B)/2]*cos[(A-B)/2]
=2*[sin(A/2)*cos(B/2)+cos(A/2)sin(B/2)]*[cos(A/2)cos(B/2)+sin(A/2)sin(B/2)]
=2*sin(A/2)*cos(A/2)*cos(B/2)*cos(B/2)+2*cos(A/2)*cos(A/2)*sin(B/2)*cos(B/2)+2*sin(A/2)*sin(A/2)*cos(B/2)*sin(B/2)+2*sin(A/2)*cos(A/2)*sin(B/2)*sin(B/2)
=sinA*[cos(B/2)*cos(B/2)+sin(B/2)*sin(B/2)]+sin(B/2)*[cos(B/2)*cos(B/2)+sin(B/2)*sin(B/2)]
=sinA+sinB=左边
证毕
其中用到公式:
sinA=2*sin(A/2)*cos(A/2),sinB=2*cos(B/2)*sin(B/2)
cos(B/2)*cos(B/2)+sin(B/2)*sin(B/2)=1
其他的公式依此类推,自己推推看吧!