2sinθ+3cosθ=0
2sinθ=-3cosθ
sinθ/cosθ=-3/2
tanθ=-3/2
2cos2θ+3sin2θ
=2*[1-(tanθ)^2]/[1+(tanθ)^2]+3*2(tanθ)/[1+(tanθ)^2]
=2*(1-9/4)/(1+9/4)+6*(-3/2)/(1+9/4)
=(-5/2)/(13/4)+(-9)/(13/4)
=(-5/2-9)/(13/4)
=(-23/2)/(13/4)
=-23/2*4/13
=-46/13
2sinθ+3cosθ=0
2sinθ=-3cosθ
sinθ/cosθ=-3/2
tanθ=-3/2
2cos2θ+3sin2θ
=2*[1-(tanθ)^2]/[1+(tanθ)^2]+3*2(tanθ)/[1+(tanθ)^2]
=2*(1-9/4)/(1+9/4)+6*(-3/2)/(1+9/4)
=(-5/2)/(13/4)+(-9)/(13/4)
=(-5/2-9)/(13/4)
=(-23/2)/(13/4)
=-23/2*4/13
=-46/13