设A(x1,y1),B(x2,y2),Q(x,y),
由AP=-λ
PB可得:(1-x1,3-y1)=-λ(x2-1,y2-3),即x1-λx2=1-λ ⑤y1-λy2=3(1-λ) ⑥
由AQ=λ
QB可得:(x-x1,y-y1)=λ(x2-x,y2-y),即x1+λx2=(1+λ)x ⑦y1+λy2=(1+λ)y ⑧
⑤×⑦得:x12-λ2x22=(1-λ2)x,⑥×⑧得:y12-λ2y22=3y(1-λ2)
两式相加得(x12+y12)-λ2(x22+y22)=(1-λ2)(x+3y)
又点A,B在圆x2+y2=3上,且λ≠±1,所以x12+y12=3,x22+y22=3
即x+3y=3,∴点Q总在定直线x+3y=3上.