设f(0)=0,f'(0)=2,求limf(x)/sin 2x ,x 趋向于0
1个回答
利用洛必达法则
x 趋向于0limf(x)/sin 2x =lim[f'(x)/2cos2x]=f'(0)/2=2/2=1
希望对你有所帮助
相关问题
设f(x)=√x,求limf(x+h)-f(x)/h (h趋向于0)
已知f(0)=0,f′(0)=1,计算极限 当x趋向于0,limf(2x)/x
f'(x)=-2,求limf(x+h)-f(x-h)/h(h趋向于0)
f(x)=x ,x=0求limf(x)(x趋向负0)limf(x)(x趋向正0)我不明白为什么limf(x)(x趋向负0
n趋向+∞ limf(x)=f(0)=1 f(2x)-f(x)=x^2 求f(x)
设x→0,limf(x)/x=0,f''(0)=4,证明:x→0,limf(x)/x^2=2
设f(x)可导f'(0)=0,又limf'(x)\x=-1(x趋向于0),则f(0)一定是f(x)的极值吗?
若f(0)=0,且f'(0)存在求limf(x)/x在x趋向0时
lim {sin3x+xf(x)}/x^3(x趋向于0)求f(0),f'(0),f’’(0)
设函数f(x)在x=0处连续,若x趋向于0时limf(x)/x存在